
Keeping
secrets secret
Centralised storage and management of
passwords / API keys/ credentials
in a scalable manner

Daniel Ivanov
sertys@gmail.com

What is a
secret?

Personal secrets

Project secrets

Organizational secrets

Dynamic secrets

Backend secrets

Private domain

Public domain

Personal secrets

● Login credentials
● developer keys
● SSH credentials
● X.509 certificates
● TOTP hashes

Project secrets

Cloud keys

Environment variables

Github accounts

Database credentials

Salts

CI-related credentials

Git-secret / git-crypt / git actions

Docker secrets

Blackbox

Organizational
secrets
are public secrets

Public secrets demand

★ security in transit and at rest
★ encryption
★ flexible authentication
★ access control
★ version control
★ solid auditing
★ easy access
★ high availability

● Common points of entry

● Shared accounts

● Company financial requisites

● IP material

● Database sensitive data

1

Introducing

A tool for centralised or clustered

management of secrets.

Build custom
or use out-of-the
box?

The eternal dilemma

https://docs.google.com/file/d/114x8FS5dSd2cwOd9odT8Gi4Kn36NMf-6/preview

Security in
transit and at
rest

The barrier - an encryption/decryption
layer between components

When a Vault server is started, it starts in a sealed state.

In this state, Vault is configured to know where and how

to access the physical storage, but doesn't know how to

decrypt any of it.

Unsealing is the process of constructing the master key

necessary to read the decryption key to decrypt the data,

allowing access to the Vault. API requests are secured

via TLS for transit.The Shamir key sharing provides key

splitting for the master key initiation. Lets us position

guardians for the data and distribute responsibility in a

predictable and configurable way.

Encryption

Core barrier encryption(as in storage encryption)
AES-256 (w/ GCM-96)

An internal barrier encrypts and decrypts the data
before it hits the storage or the API router

Transport level encryption
TLS(by default)

Since the API exposes HTTP, it is securable in a
plethora of manners depending on infrastructure.

Flexible
authentication

Vault does not discriminate machines
nor humans

Flexible authentication which is also pluggable and
supports :
AppRoles
AliCloud

AWS
Azure

Google cloud
JWT

Kubernetes
Github
LDAP
Okta

Radius
TLS certificates

Tokens
Username/Password

...and your imagination + coding skills

Access control

Vault is in essence a RESTful API and it’s policies are path-based. Everything is DENY by default. This

gives for flexible and granular control

Permit reading only "secret/foo". An attached token cannot read "secret/food"
or "secret/foo/bar".
path "secret/foo" {
 capabilities = ["read"]
}

Permit reading everything under "secret/bar". An attached token could read
"secret/bar/zip", "secret/bar/zip/zap", but not "secret/bars/zip".
path "secret/bar/*" {
 capabilities = ["read"]
}

Permit reading everything prefixed with "zip-". An attached token could read
"secret/zip-zap" or "secret/zip-zap/zong", but not "secret/zip/zap
path "secret/zip-*" {
 capabilities = ["read"]

}

Version control

Vault can be just a KV-store if so you
desire

Vault supports various secrets engines.
Think of them as functional implementations.

The more basic are the KV engines - Version 1,
Version 2.

Version 1
● Speed
● No-locking
● No versioning

Version 2
● Locking
● Metadata overhead
● Versioning

Solid auditing

Storing detailed logs for data access and manipulation is as easy as :

And you can send audit logs to stdout(for container logging) or a socket(tcp,udp,unix) for off-site storage.

Audit deviced also support HTTP header passthrough for integrated logging.

Auditability is key for when fecal matter hits the fan as it provides investigation paths and damage

control.

$ vault audit enable file file_path=/var/log/vault_audit.log

Easy access

Vault provides a web UI, CLI and a
RESTful API

Vault supports multiple management and access
vectors that use the same core

CLI for sysadmins
Web UI for users

API for developers

High availability

Vault has pluggable storage

With Vault you can use distributed or centralised
storage. The core is stateless which avails to
replication of service. You can store your secrets in:

● Azure
● Cassandra
● CockroachDB
● Consul
● CouchDB
● DynamoDB
● Filesystem
● In-Memory
● MySQL
● PostgreSQL
● S3
● Swift
● Zookeeper
● + more

https://www.vaultproject.io/docs/configuration/storage/azure.html
https://www.vaultproject.io/docs/configuration/storage/cassandra.html
https://www.vaultproject.io/docs/configuration/storage/cockroachdb.html
https://www.vaultproject.io/docs/configuration/storage/consul.html
https://www.vaultproject.io/docs/configuration/storage/couchdb.html
https://www.vaultproject.io/docs/configuration/storage/dynamodb.html
https://www.vaultproject.io/docs/configuration/storage/filesystem.html
https://www.vaultproject.io/docs/configuration/storage/in-memory.html
https://www.vaultproject.io/docs/configuration/storage/mysql.html
https://www.vaultproject.io/docs/configuration/storage/postgresql.html
https://www.vaultproject.io/docs/configuration/storage/s3.html
https://www.vaultproject.io/docs/configuration/storage/swift.html
https://www.vaultproject.io/docs/configuration/storage/zookeeper.html

Still not convinced?

You can still use Vault for Encryption as a service in pseudo-TSM manner

Next Steps
Dynamic secrets

Security concerns
Deployment patterns

Plugins

